Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Biomed Phys Eng Express ; 10(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38350128

ABSTRACT

The paper aims to explore the current state of understanding surrounding in silico oral modelling. This involves exploring methodologies, technologies and approaches pertaining to the modelling of the whole oral cavity; both internally and externally visible structures that may be relevant or appropriate to oral actions. Such a model could be referred to as a 'complete model' which includes consideration of a full set of facial features (i.e. not only mouth) as well as synergistic stimuli such as audio and facial thermal data. 3D modelling technologies capable of accurately and efficiently capturing a complete representation of the mouth for an individual have broad applications in the study of oral actions, due to their cost-effectiveness and time efficiency. This review delves into the field of clinical phonetics to classify oral actions pertaining to both speech and non-speech movements, identifying how the various vocal organs play a role in the articulatory and masticatory process. Vitaly, it provides a summation of 12 articulatory recording methods, forming a tool to be used by researchers in identifying which method of recording is appropriate for their work. After addressing the cost and resource-intensive limitations of existing methods, a new system of modelling is proposed that leverages external to internal correlation modelling techniques to create a more efficient models of the oral cavity. The vision is that the outcomes will be applicable to a broad spectrum of oral functions related to physiology, health and wellbeing, including speech, oral processing of foods as well as dental health. The applications may span from speech correction, designing foods for the aging population, whilst in the dental field we would be able to gain information about patient's oral actions that would become part of creating a personalised dental treatment plan.


Subject(s)
Mouth , Speech , Humans , Aged , Mouth/physiology , Speech/physiology , Phonetics
2.
Carbohydr Polym ; 326: 121633, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142079

ABSTRACT

Polysaccharides are among the most abundant bioresources on earth and consequently need to play a pivotal role when addressing existential scientific challenges like climate change and the shift from fossil-based to sustainable biobased materials. The Research Roadmap 2040 of the European Polysaccharide Network of Excellence (EPNOE) provides an expert's view on how future research and development strategies need to evolve to fully exploit the vast potential of polysaccharides as renewable bioresources. It is addressed to academic researchers, companies, as well as policymakers and covers five strategic areas that are of great importance in the context of polysaccharide related research: (I) Materials & Engineering, (II) Food & Nutrition, (III) Biomedical Applications, (IV) Chemistry, Biology & Physics, and (V) Skills & Education. Each section summarizes the state of research, identifies challenges that are currently faced, project achievements and developments that are expected in the upcoming 20 years, and finally provides outlines on how future research activities need to evolve.


Subject(s)
Polysaccharides
3.
Sci Rep ; 13(1): 11367, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443326

ABSTRACT

Glycopeptide antibiotics are regularly used in ophthalmology to treat infections of Gram-positive bacteria. Aggregative interactions of antibiotics with mucins however can lead to long exposure and increases the risk of resistant species. This study focuses on the evaluation of potential interactions of the last line of defence glycopeptide antibiotic teicoplanin with an ocular mucin model using precision matrix free hydrodynamic and microscopic techniques: sedimentation velocity in the analytical ultracentrifuge (SV-AUC), dynamic light scattering (DLS) and atomic force microscopy (AFM). For the mixtures of teicoplanin at higher doses (1.25 mg/mL and 12.5 mg/mL), it was shown to interact and aggregate with bovine submaxillary mucin (BSM) in the distributions of both sedimentation coefficients by SV-AUC and hydrodynamic radii by DLS. The presence of aggregates was confirmed by AFM for higher concentrations. We suggest that teicoplanin eye drop formulations should be delivered at concentrations of < 1.25 mg/mL to avoid potentially harmful aggregations.


Subject(s)
Hydrodynamics , Teicoplanin , Animals , Cattle , Mucins , Anti-Bacterial Agents/pharmacology , Glycopeptides
4.
Front Plant Sci ; 14: 1150202, 2023.
Article in English | MEDLINE | ID: mdl-36998675

ABSTRACT

The cell wall is one of the defining features of plants, controlling cell shape, regulating growth dynamics and hydraulic conductivity, as well as mediating plants interactions with both the external and internal environments. Here we report that a putative mechanosensitive Cys-protease DEFECTIVE KERNEL1 (DEK1) influences the mechanical properties of primary cell walls and regulation of cellulose synthesis. Our results indicate that DEK1 is an important regulator of cellulose synthesis in epidermal tissue of Arabidopsis thaliana cotyledons during early post-embryonic development. DEK1 is involved in regulation of cellulose synthase complexes (CSCs) by modifying their biosynthetic properties, possibly through interactions with various cellulose synthase regulatory proteins. Mechanical properties of the primary cell wall are altered in DEK1 modulated lines with DEK1 affecting both cell wall stiffness and the thickness of the cellulose microfibril bundles in epidermal cell walls of cotyledons.

5.
Sci Rep ; 13(1): 1969, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737502

ABSTRACT

The natural glycopeptide antibiotic teicoplanin is used for the treatment of serious Gram-positive related bacterial infections and can be administered intravenously, intramuscularly, topically (ocular infections), or orally. It has also been considered for targeting viral infection by SARS-CoV-2. The hydrodynamic properties of teicoplanin A2 (M1 = 1880 g/mol) were examined in phosphate chloride buffer (pH 6.8, I = 0.10 M) using sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge together with capillary (rolling ball) viscometry. In the concentration range, 0-10 mg/mL teicoplanin A2 was found to self-associate plateauing > 1 mg/mL to give a molar mass of (35,400 ± 1000) g/mol corresponding to ~ (19 ± 1) mers, with a sedimentation coefficient s20, w = ~ 4.65 S. The intrinsic viscosity [[Formula: see text]] was found to be (3.2 ± 0.1) mL/g: both this, the value for s20,w and the hydrodynamic radius from dynamic light scattering are consistent with a globular macromolecular assembly, with a swelling ratio through dynamic hydration processes of ~ 2.


Subject(s)
COVID-19 , Teicoplanin , Humans , Hydrodynamics , SARS-CoV-2 , Anti-Bacterial Agents , Glycopeptides
6.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36004513

ABSTRACT

It has become apparent that beer (both alcoholic and nonalcoholic) contains appreciable amounts of non-starch polysaccharides, a broad subgroup of dietary fiber. It is worth noting that the occurrence of non-starch polysaccharides in alcoholic beer does not imply this should be consumed as a source of nutrition. But the popularity of nonalcoholic beer is growing, and the lessons learnt from non-starch polysaccharides in brewing can be largely translated to nonalcoholic beer. For context, we briefly review the origins of dietary fiber, its importance within the human diet and the significance of water-soluble dietary fiber in beverages. We review the relationship between non-starch polysaccharides and brewing, giving focus to the techniques used to quantify non-starch polysaccharides in beer, how they affect the physicochemical properties of beer and their influence on the brewing process. The content of non-starch polysaccharides in both regular and low/nonalcoholic beer ranges between 0.5 - 4.0 g/L and are predominantly composed of arabinoxylans and ß-glucans. The process of malting, wort production and filtration significantly affect the soluble non-starch polysaccharide content in the final beer. Beer viscosity and turbidity are strongly associated with the content of non-starch polysaccharides.

7.
Proc Natl Acad Sci U S A ; 119(31): e2201350119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881796

ABSTRACT

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.


Subject(s)
Crops, Agricultural , Gravitropism , Hordeum , Plant Proteins , Plant Roots , Cell Wall/chemistry , Crops, Agricultural/chemistry , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gravitropism/genetics , Hordeum/chemistry , Hordeum/genetics , Hordeum/growth & development , Microscopy, Atomic Force , Plant Proteins/genetics , Plant Proteins/physiology , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/growth & development , Reactive Oxygen Species/metabolism , Transcription, Genetic
8.
Food Chem ; 388: 133013, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35483284

ABSTRACT

This study aims to understand possible effects of flavour compounds on the structure and conformation of endogenous proteins. Using methyl anthranilate (a grape flavour compound added to drinks, confectionery, and vape-liquids) and bovine serum albumin (BSA, a model serum protein) we designed experimental investigations using analytical ultracentrifugation, size exclusion chromatography small angle X-ray scattering, and fluorescence spectroscopy to reveal that methyl anthranilate spontaneously binds to BSA (ΔG°, ca. -21 KJ mol-1) which induces a conformational compactness (ca. 10 %) in the monomer structure. Complementary molecular modelling and dynamics simulations suggested the binding occurs at Sudlow II of BSA via establishment of hydrogen bonds with arginine409, lysine413 and serine488 leading to an increased conformational order in domains IA, IIB and IIIB. This work aims to set the foundation for future research on flavour-protein interactions and offer new sets of opportunities for understanding the effects of small compounds on protein structure.


Subject(s)
Serum Albumin, Bovine , ortho-Aminobenzoates , Circular Dichroism , Molecular Conformation , Protein Binding , Protein Conformation , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Thermodynamics
9.
Food Funct ; 12(18): 8425-8439, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34374400

ABSTRACT

Two strategies were combined and applied in this study to achieve a desired structure and texture of gluten free crackers and to reduce the calorie content. The first strategy is increasing structural heterogeneity of crackers and doughs and a separated-dough method was developed. A butter dough and a water dough were prepared separately and mixed together and the influence of mixing time was investigated. In the second strategy, which is the incorporation of a structuring material, powdered cellulose and fibrillated cellulose were incorporated in formulation to replace flour and pregelatinised starch with enhanced health benefits of low calorie and high fibre. Powdered cellulose played the role of the skeleton of the gluten free crackers. A laminar structure was observed in crackers when powdered cellulose was initially added to the butter dough. The crackers exhibit high thickness, hardness and fracturability and sharp sound emission which are typically observed in wheat crackers. Pregelatinised starch can be replaced by fibrillated cellulose at a lower addition level.


Subject(s)
Cellulose , Flour , Food Handling/methods , Glutens , Starch/chemistry , Dietary Fiber , Triticum/chemistry
10.
Carbohydr Polym ; 269: 118318, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294330

ABSTRACT

We report rheological characterisation of hydrogels formed by highly substituted brush-like arabinoxylans from Plantago ovata seed mucilage. Two arabinoxlyan fractions with similar molecular weight and linkage compositions are chosen to form gels with distinct rheological properties but a similar network structure. Small and large amplitude oscillatory shear rheology is used to characterise the sol-gel transition as a function of temperature and concentration. Differences in rheology and gelation of the two hydrogels are found to be associated with the different proportion of 'slow'- and 'fast'-dissociating junctions stabilised by hydrogen bonds, with the 'fast'-dissociating junctions playing an important role in rapid self-healing of the gel. Based on the temperature dependence of storage modulus and time-temperature superposition principle in combination with the Arrhenius equation, the activation energies of junction zone dissociation are estimated to be 402-480 kJ/mol and 97-144 kJ/mol for the 'slow' and 'fast' junction types, respectively.


Subject(s)
Hydrogels/chemistry , Plantago/chemistry , Seeds/chemistry , Viscoelastic Substances/chemistry , Xylans/chemistry , Elastic Modulus , Hydrogen Bonding , Phase Transition , Rheology
11.
Biophys J ; 120(13): 2631-2643, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34087208

ABSTRACT

Within the nucleus of the eukaryotic cell, DNA is partitioned into domains of highly condensed, transcriptionally silent heterochromatin and less condensed, transcriptionally active euchromatin. Heterochromatin protein 1α (HP1α) is an architectural protein that establishes and maintains heterochromatin, ensuring genome fidelity and nuclear integrity. Although the mechanical effects of changes in the relative amount of euchromatin and heterochromatin brought about by inhibiting chromatin-modifying enzymes have been studied previously, here we measure how the material properties of the nuclei are modified after the knockdown of HP1α. These studies were inspired by the observation that poorly invasive MCF7 breast cancer cells become more invasive after knockdown of HP1α expression and that, indeed, in many solid tumors the loss of HP1α correlates with the onset of tumor cell invasion. Atomic force microscopy (AFM), optical tweezers (OT), and techniques based on micropipette aspiration (MA) were each used to characterize the mechanical properties of nuclei extracted from HP1α knockdown or matched control MCF7 cells. Using AFM or OT to locally indent nuclei, those extracted from MCF7 HP1α knockdown cells were found to have apparent Young's moduli that were significantly lower than nuclei from MCF7 control cells, consistent with previous studies that assert heterochromatin plays a major role in governing the mechanical response in such experiments. In contrast, results from pipette-based techniques in the spirit of MA, in which the whole nuclei were deformed and aspirated into a conical pipette, showed considerably less variation between HP1α knockdown and control, consistent with previous studies reporting that it is predominantly the lamins in the nuclear envelope that determine the mechanical response to large whole-cell deformations. The differences in chromatin organization observed by various microscopy techniques between the MCF7 control and HP1α knockdown nuclei correlate well with the results of our measured mechanical responses and our hypotheses regarding their origin.


Subject(s)
Cell Nucleus , Chromosomal Proteins, Non-Histone , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Heterochromatin , Humans , MCF-7 Cells , Transcription Factors
12.
Soft Matter ; 17(19): 5073-5083, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33929481

ABSTRACT

Suspensions of soft particles transition from a viscous fluid to a soft material upon increases in phase volume. The criteria defining the transition to this jammed state are difficult to define due to the porous and deformable nature of soft particles. Here, we characterise the rheology of aqueous suspensions of industrially relevant non-colloidal, polydisperse, frictional agarose microgels and evaluate shear and viscoelastic behaviour across a range of phase volumes from the dilute regime to the highly concentrated regime. In order to model the viscoelastic response of suspensions without free fitting parameters, the random close packing volume fraction (φrcp) and the particle modulus are determined, respectively, from particle size distribution measurements and direct measurements of reduced elastic modulus of individual particles (Erp) using Atomic Force Microscopy. It is found that at φrcp, previously shown to correspond to divergence of the viscosity, also corresponds to the suspension transition from a viscous to viscoelastic fluid. However, the transition to a jammed solid-like state (φj) occurs at phase volumes exceeding this value (i.e. φj > φrcp). The suspension modulus and its sudden growth at φj are well-predicted by the Evans and Lips model that incorporates the Erp of the hydrogel particles. This rheological behaviour showing a dual transition is reminiscent of two families of systems: (i) colloidal suspensions and (ii) frictional-adhesive non-colloidal suspensions. However, it does not strictly follow either case. We propose that the width of the transition region is dictated by frictional contact, particle size distribution and particle modulus, and plan to further probe this in future work.

13.
Sci Rep ; 10(1): 20855, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257785

ABSTRACT

Consumer sensory evaluation, aroma release analysis and biophysical protein analysis were used to investigate the effect of ethanol on the release and perception of flavour in beer (lager and stout) at different ethanol levels (0 and 5% ABV). Consumer study results showed no significant differences in orthonasal perception, yet retronasal results showed that 0% lager was perceived as maltier with reduced fruitiness, sweetness, fullness/body and alcohol warming sensation (p < 0.05). Whilst ethanol alone decreases the aroma release regardless of LogP, the presence of α-amylase selectively reduces the headspace concentration of hydrophobic compounds. It was found that ethanol has a subtle inhibitory effect on the binding of hydrophobic compounds to α-amylase, thereby increasing their headspace concentration in the 5% ABV as compared to the 0% beers. This synergistic ethanol * saliva effect is attributed to the changes in the conformation of α-amylase due to ethanol-induced denaturation. It is hypothesised that the partially unfolded protein structures have a lower number of hydrophobic pockets, leading to a lower capacity to entrap hydrophobic aroma compounds. This supports the hypothesis that ethanol * saliva interactions directly impact the sensory and flavour properties of beer, which would provide a basis for further investigations in reformulation of 0% ABV drinks.

14.
Eur Biophys J ; 49(8): 799-808, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33185715

ABSTRACT

Aroma compounds are diverse low molecular weight organic molecules responsible for the flavour of food, medicines or cosmetics. Natural and artificial aroma compounds are manufactured and used by the industry to enhance the flavour and fragrance of products. While the low concentrations of aroma compounds present in food may leave no effect on the structural integrity of the mucosa, the effect of concentrated aroma volatiles is not well understood. At high concentrations, like those found in some flavoured products such as e-cigarettes, some aroma compounds are suggested to elicit a certain degree of change in the mucin glycoprotein network, depending on their functional group. These effects are particularly associated with carbonyl compounds such as aldehydes and ketones, but also phenols which may interact with mucin and other glycoproteins through other interaction mechanisms. This study demonstrates the formation of such interactions in vitro through the use of molecular hydrodynamics. Sedimentation velocity studies reveal that the strength of the carbonyl compound interaction is influenced by compound hydrophobicity, in which the more reactive short chain compounds show the largest increase in mucin-aroma sedimentation coefficients. By contrast, the presence of groups that increases the steric hindrance of the carbonyl group, such as ketones, produced a milder effect. The interaction effects were further demonstrated for hexanal using size exclusion chromatography light scattering (SEC-MALS) and intrinsic viscosity. In addition, phenolic aroma compounds were identified to reduce the sedimentation coefficient of mucin, which is consistent with interactions in the non-glycosylated mucin region.


Subject(s)
Hydrocarbons, Aromatic/pharmacology , Hydrodynamics , Mucins/metabolism , Hydrophobic and Hydrophilic Interactions/drug effects , Mucins/chemistry , Phenols/pharmacology
15.
NPJ Sci Food ; 4: 15, 2020.
Article in English | MEDLINE | ID: mdl-33083547

ABSTRACT

Food flavour ingredients are required by law to obtain prior approval from regulatory bodies, such as the U.S. Food and Drug Administration (FDA) or the European Food Safety Authority (EFSA) in terms of toxicological data and intended use levels. However, there are no regulations for labelling the type and concentration of flavour additives on the product, primarily due to their low concentration in food and generally recognised as safe (GRAS) status determined by the flavour and extract manufacturers' association (FEMA). Their status for use in e-cigarettes and other vaping products challenges these fundamental assumptions, because their concentration can be over ten-thousand times higher than in food, and the method of administration is through inhalation, which is currently not evaluated by the FEMA expert panel. This work provides a review of some common flavour ingredients used in food and vaping products, their product concentrations, inhalation toxicity and aroma interactions reported with different biological substrates. We have identified several studies, which suggest that the high concentrations of flavour through inhalation may pose a serious health threat, especially in terms of their cytotoxicity. As a result of the wide range of possible protein-aroma interactions reported in our diet and metabolism, including links to several non-communicable diseases, we suggest that it is instrumental to update current flavour- labelling regulations, and support new strategies of understanding the effects of flavour uptake on the digestive and respiratory systems, in order to prevent the onset of future non-communicable diseases.

16.
Nat Commun ; 11(1): 4692, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943624

ABSTRACT

Hemicelluloses, a family of heterogeneous polysaccharides with complex molecular structures, constitute a fundamental component of lignocellulosic biomass. However, the contribution of each hemicellulose type to the mechanical properties of secondary plant cell walls remains elusive. Here we homogeneously incorporate different combinations of extracted and purified hemicelluloses (xylans and glucomannans) from softwood and hardwood species into self-assembled networks during cellulose biosynthesis in a bacterial model, without altering the morphology and the crystallinity of the cellulose bundles. These composite hydrogels can be therefore envisioned as models of secondary plant cell walls prior to lignification. The incorporated hemicelluloses exhibit both a rigid phase having close interactions with cellulose, together with a flexible phase contributing to the multiscale architecture of the bacterial cellulose hydrogels. The wood hemicelluloses exhibit distinct biomechanical contributions, with glucomannans increasing the elastic modulus in compression, and xylans contributing to a dramatic increase of the elongation at break under tension. These diverging effects cannot be explained solely from the nature of their direct interactions with cellulose, but can be related to the distinct molecular structure of wood xylans and mannans, the multiphase architecture of the hydrogels and the aggregative effects amongst hemicellulose-coated fibrils. Our study contributes to understanding the specific roles of wood xylans and glucomannans in the biomechanical integrity of secondary cell walls in tension and compression and has significance for the development of lignocellulosic materials with controlled assembly and tailored mechanical properties.


Subject(s)
Cell Wall/chemistry , Cellulose/chemistry , Plant Extracts/chemistry , Plants/chemistry , Polysaccharides/chemistry , Wood/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Cathartics/chemistry , Cytoskeleton/chemistry , Hydrogels/chemistry , Mannans , Xylans/chemistry
17.
Langmuir ; 36(34): 9987-9992, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32787046

ABSTRACT

The short-range attractive forces between hydrophobic surfaces are key factors in a wide range of areas such as protein folding, lipid self-assembly, and particle-bubble interaction such as in industrial flotation. Little is certain about the effect of dissolved (well-controlled) gases on the interaction forces, in particular in those systems where the formation of surface nanobubble bridges is suppressed. Here, we probe the short-range attractive force between hydrophobized silica surfaces in aqueous solutions with varying but well-controlled isotherms of gas solubility. The first contact approach force measurement method using AFM shows that decreasing gas solubility results in a decrease of the force magnitude as well as shortening of its range. The behavior was found to be consistent across all four aqueous systems and gas solubilities tested. Using numerical computations, we corroborate that attractive force can be adequately explained by a multilayer dispersion force model, which accounts for an interfacial gas enrichment (IGE), that results in the formation of a dense gas layer (DGL) adjacent to the hydrophobic surface. We found that the DGL on the hydrophobic surface is affected only by the concentration of dissolved gases and is independent of the salt type, used to control the gas solubility, which excludes the effect of electrical double-layer interactions on the hydrophobic force.

18.
Macromol Rapid Commun ; 41(18): e2000304, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32761855

ABSTRACT

One of the key factors influencing the mechanical properties of natural and synthetic extracellular matrices (ECM) is how large-scale 3D gel-like structures emerge from the molecular self-assembly of individual polymers. Here, structural characterization using small-angle neutron scattering (SANS) of ECM-mimicking polyisocyanopeptide (PIC) hydrogels are reported as a function of background ions across the Hofmeister series. More specifically, the process of polymer assembly is examined by probing the structural features of the heat-set gels and correlating them with their rheological and micro-mechanical properties. The molecular parameters obtained from SANS clearly show changes in polymer conformation which map onto the temperature-induced changes in rheological and micro-mechanical behavior. The formation of larger structures are linked to the formation of cross-links (or bundles), whilst the onset of their detection in the SANS is putatively linked to their concentration in the gel. These insights provide support for the 'hot-spot' gelation mechanism of PIC heat-set gels. Finally, it is found that formation of cross-links and heat-set gelling properties can be strongly influenced by ions in accordance with Hofmeister series. In practice, these results have significance since ions are inherently present in high concentration during cell culture studies; this may therefore influence the structure of synthetic ECM networks.


Subject(s)
Hot Temperature , Polymers , Hydrogels , Rheology , Scattering, Small Angle
19.
J Texture Stud ; 51(1): 67-77, 2020 02.
Article in English | MEDLINE | ID: mdl-31087645

ABSTRACT

We discuss food oral processing research over the last two decades and consider strategies for quantifying the food breakdown model, originally conceptualized by Hutchings and Lillford. The key innovation in their seminal 1988 paper was shifting the focus from intact food properties, measured in the lab, toward strategies to capture the dynamic nature of eating. This has stimulated great progress in the field, but a key aspect missing in oral processing research is the conversion of the Hutchings and Lillford breakdown path conceptual model into quantifiable parameters considered in the context of physiological factors such as saliva and oral movements. To address these shortcomings, we propose the following analysis: Hutchings's and Lillford's definitions of "Structure" and "Lubrication" are incomplete and they comprise many and varied physicochemical properties. We offer, here, a deeper analysis of each parameter, and propose strategies for researchers to consider in their quantification as an update of the Hutchings and Lillford Breakdown path.


Subject(s)
Food , Mouth/physiology , Saliva/physiology , Humans , Lubrication , Rheology , Taste , Viscosity
20.
Br J Nutr ; 122(10): 1142-1154, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31709970

ABSTRACT

Whole-grain cereal breakfast consumption has been associated with beneficial effects on glucose and insulin metabolism as well as satiety. Pearl millet is a popular ancient grain variety that can be grown in hot, dry regions. However, little is known about its health effects. The present study investigated the effect of a pearl millet porridge (PMP) compared with a well-known Scottish oats porridge (SOP) on glycaemic, gastrointestinal, hormonal and appetitive responses. In a randomised, two-way crossover trial, twenty-six healthy participants consumed two isoenergetic/isovolumetric PMP or SOP breakfast meals, served with a drink of water. Blood samples for glucose, insulin, glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide (GIP), peptide YY, gastric volumes and appetite ratings were collected 2 h postprandially, followed by an ad libitum meal and food intake records for the remainder of the day. The incremental AUC (iAUC2h) for blood glucose was not significantly different between the porridges (P > 0·05). The iAUC2h for gastric volume was larger for PMP compared with SOP (P = 0·045). The iAUC2h for GIP concentration was significantly lower for PMP compared with SOP (P = 0·001). Other hormones and appetite responses were similar between meals. In conclusion, the present study reports, for the first time, data on glycaemic and physiological responses to a pearl millet breakfast, showing that this ancient grain could represent a sustainable alternative with health-promoting characteristics comparable with oats. GIP is an incretin hormone linked to TAG absorption in adipose tissue; therefore, the lower GIP response for PMP may be an added health benefit.


Subject(s)
Appetite/drug effects , Avena , Blood Glucose , Breakfast , Gastrointestinal Motility/drug effects , Pennisetum , Adult , Cross-Over Studies , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...